ONE STEP SYNTHESIS OF 4-METHYLAMINOMETHYLINDOLE1

Masanori SOMEI, Fumio YAMADA, and Chikara KANEKO Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920

4-Methylaminomethylindole was prepared in one step in 20% yield from 2-methyl-5-nitroisoquinolinium iodide by the reaction with aqueous ${\rm TiCl}_3$.

We wish to report a convenient and economical one step synthesis of 4-methyl-aminomethylindole $\underline{2}$, a useful intermediate for 4-substituted indoles, 2 from 2-methyl-5-nitroisoquinolinium iodide 1.

Treatment of $\underline{1}$ with aqueous TiCl $_3$ in H $_2$ O at room temperature gave $\underline{2}$ in varied yields depending on the reaction conditions. The effects of the amount of TiCl $_3$, the reaction time, and the solvent system on the yield of $\underline{2}$ are summarized in Tables I, II, and III.

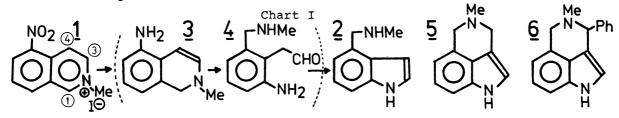
Water was a solvent of choice and the reaction proceeded very fast (7 min). Since the methylaminomethylindole $\underline{2}$ was sensitive to acids, the longer the reaction time, the poorer the yield of $\underline{2}$. The mechanism shown in chart I is proposed for this reaction. TiCl $_3$ is known to reduce nitroarenes to the corresponding amines under the condition, and hence expected to reduce the nitro group of $\underline{1}$. Concomitant reduction of the 1,2-immonium function of $\underline{1}$ may then result in generation of an intermediate $\underline{3}$. The latter may be hydrolyzed under the condition to give another intermediate 4, which would cyclize to the final product $\underline{2}$.

Table I. Effect of The Relative Ratio of TiCl, to $\underline{1}^*$

Entry	Mol Equiv of TiCl ₃	Yield of 2 (%)	Reaction Time (min)
1	3.5	1	5
2	7.0	5	7
3	7.7	20	7
4	8.7	4	7

^{*} The reactions were carried out at room temperature (19°C).

Table II. Effect of The Reaction Time*


Entry	Reaction Time (min)	Yield of 2 (%)	Room Temperature (°C)	
5	3	14	18	
6	5	16	20	
3	7	20	19	
7	10	8	18	

^{* 7.7} Mol equiv of $TiCl_3$ was used.

	Table III. Effect of the solvent sy	s cems
Entry	Solvent System	Yield of 2 (%)
3	н ₂ о	20
8	H_2^{O-MeOH} (2:1, v/v)	13
9	H_2^{-} O-THF (2:1, v/v)	4

Table III. Effect of The Solvent Systems *

* Reaction time was kept constant for 7 min and 7.7 mol equiv of ${\rm TiCl}_3$ was used at room temperature (19°C).

The compound $\underline{2}$ was further converted to 4-methyl-1,3,4,5-tetrahydropyrrolo- [4,3,2-de]isoquinoline $\underline{5}^5$ (yield 11%) and 4-methyl-3-phenyl-1,3,4,5-tetrahydropyrrolo[4,3,2-de]isoquinoline $\underline{6}^6$ (yield 31%) by the reaction with HCHO-AcOH and benzaldehyde-AcOH, respectively.

Although the yield of $\underline{2}$ is still not satisfactory (20%), the present one step procedure provides a valuable synthetic method for 4-substituted indoles which are not readily accessible by the known synthetic routes. 2

The reaction of $\underline{1}$ with stannous chloride is currently under investigation. Typical Experiment

To a stirred solution of $\underline{1}$ (160 mg) in $\mathrm{H_2O}$ (2 ml) was added an aqueous $\mathrm{TiCl_3}$ solution (16%, 2.5 ml, 7.7 mol equiv). After stirring for 7 min at room temperature, the reaction mixture was basified by adding aqueous 2N-NaOH solution and extracted with $\mathrm{MeOH-CH_2Cl_2}$ (5:95, $\mathrm{v/v}$). The extract was washed with sat. NaCl solution, dried over $\mathrm{Na_2SO_4}$, and evaporated to leave an oil, which was subjected to preparative thin layer chromatography on $\mathrm{Al_2O_3}$ using $\mathrm{MeOH-CH_2Cl_2}$ (3:97, $\mathrm{v/v}$) as an eluent giving $\underline{2}$ in 20% yield (16 mg).

References and Notes

- 1. Part X of "The Chemistry of Indoles". Part IX, M.Somei and Y.Kurizuka, Chemistry Letters, 127 (1979).
- 2. Recent development of the synthesis of 4-substituted indole derivatives: B.M. Trost, M.Reiffen, and M.Crimmin, J. Am. Chem. Soc., <u>101</u>, 257 (1979); M.Natsume, Report of "Chemical Research in Development and Utilization of Nitrogen Organic Resources-Grant-in-Aid for Special Project Research (Ministry of Education, Science, and Culture", vol. III, p160 (1979); C.Kaneko, A.Yamamoto, and M.Hashiba, Chem. Pharm. Bull., <u>27</u>, 946 (1979); A.P.Kozikowski and M.P.Kuniak, J. Org. Chem., <u>43</u>, 2083 (1978).
- 3. Chem. Abstr., 63P, 9917a; Sandoz Ltd., Netherlands Patent 6406049 (1964).
- 4. T.L.Ho and C.W.Wong, Synthesis, 44 (1974).
- 5. M.Somei, K.Hashiba, F.Yamada, T.Maekawa, T.Kimata, and C.Kaneko, Chemistry Letters, 1245 (1978).
- 6. C.A.Demerson, A.H.Philipp, and L.G.Humber, J. Med. Chem., <u>17</u>, 1140 (1974).